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1. Introduction

In 1965, Zadeh [37] introduced the concept of a fuzzy set as the generalization of a set. In

1986, Chang [8] was the first to introduce the notion of a fuzzy topology on a set X. After

that, many researchers [16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 36] have investigated several

properties, e.g., fuzzy closure operator, fuzzy compactness, fuzzy connectedness, separation

axioms, regularity axioms, normality axioms, neighborhood structures and product, etc. in

fuzzy topological spaces.

However, in their definition of fuzzy topology, fuzziness in the concept of openness of a fuzzy

set was absent. In 1985, Kubiak [21] and Šostak [35] introduced the concept of gradation of

openness (closedness) of fuzzy sets in a set X and gave the definition of a fuzzy topology on X as

an extension of Chang′s fuzzy topology [8]. After then, many researchers [9, 10, 14, 15, 26, 27, 30]

studied fuzzy topology in the above sense.
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In 1975, Zadeh [38] introduced the idea of interval-valued fuzzy sets. In 1986, Atanassov

[2] introduced the idea of intuitionistic fuzzy set. After then many researchers [2, 3, 4, 5, 6, 7]

have worked mainly on operators and relations on intuitionistic fuzzy sets and interval-valued

intuitionistic fuzzy sets. In particular, In 2010, Cheong and Hur [11] introduced the concept of

an intuitionistic interval-valued fuzzy set and studied its basic properties. In 1997, Çoker [12]

introduced the idea of the topology of intuitionistic fuzzy sets. Moreover, Samanta and Mondal

[32, 33] introduced the definitions of the topology of interval-valued fuzzy sets and the topology

of interval-valued intuitionistic fuzzy sets, respectively.

On the other hand, Çoker and Demirci [13], and Samanta and Mondal [31, 34] defined

intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak′s sense thereby gave

the definition of an intuitionsitic fuzzy topology (in short, IFT). In particular, in 2005, Abbas

[1] introduced the notions of some intuitionistic fuzzy compactness in intuitionistic topological

spaces and investigated some their properties. They mainly dealt with intuitionistic gradation

of openness of fuzzy sets in the sense of Chang. But in 2010, Lim et al. [22] dealt with it in

Lowen′s sense.

In this paper, we introduce the concepts of an intuitionistic smooth [resp. weak, strong] con-

tinuity and an intuitionistic smooth homeomorphism, and we obtained some of their properties.

Next, we define an intuitionistic smooth subspace and study its some properties. Finally, we de-

fine an intuitionistic smooth neighborhood system and an intuitionistic smooth Q-neighborhood

system and we obtain the its characterization, respectively (See Theorem 5.5).

2. Preliminaries

In this section, we will list some concepts and results which are needed in the next sections.

Throughout this paper, X,Y, Z, etc. always denote nonempty (ordinary) sets. We will write

I = [0, 1], I0 = (0, 1] and I1 = [0, 1).

Definition 2.1 ([37]). A mapping A : X → I is called a fuzzy set in X. 0 and 1 are called

the empty fuzzy set and the whole fuzzy set in X defined by 0(x) = 0 and 1(x) = 1 for each

x ∈ X, respectively. The set {x ∈ X : A(x) > 0} is called a support of A and is denoted by

S(A) or A0.

We will denote the set of all fuzzy sets as IX .

From [8], we can see that (IX ,∪,∩,0,1) is a complete distributive lattice satisfying the

DeMorgan′s Laws with the least element 0 and the greatest element 1.

Definition 2.2 ([8, 29]). Let f : X → Y be a mapping, let A ∈ IX and let B ∈ IY .

(i) The image of A under f , denoted by f(A), is a fuzzy set in Y defined as follows: for each

y ∈ Y ,

f(A)(y) =


∨

f(x)=y

A(x) if f−1(y) 6= ∅

0 if f−1(y) = ∅,

(ii) The preimage of B under f , denoted by f−1(B), is a fuzzy set in X as follows: for each

x ∈ X,
f−1(B)(x) = B(f(x)).

2
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Let I ⊕ I = {(a, b) ∈ I × I : a+ b ≤ 1}, let (a, b), (c, d) ∈ I ⊕ I and let {(aα, bα)}α∈Γ ⊂ I ⊕ I.

We define the following(See [11]):

(i) (a, b) ≤ (c, d) iff a ≤ c and b ≥ d,
(ii) (a, b) = (c, d) iff (a, b) ≤ (c, d) and (c, d) ≤ (a, b),

(iii) (a, b)c = (b, a), where (a, b)c denotes the complement of (a, b),

(iv)
∨
α∈Γ

(aα, bα) = (
∨
α∈Γ

aα,
∧
α∈Γ

bα),

(v)
∧
α∈Γ

(aα, bα) = (
∧
α∈Γ

aα,
∨
α∈Γ

bα).

Each member (a, b) of I ⊕ I is called an intuitionistic point. When the elements of I ⊕ I are

denoted be capital letters M,N, · · · , we write M = (µM , νM ), N = (µN , νN ), · · · , where µM

and νM are the membership and the nonmembership points, respectively.

From Theorem 2.1 in [11], we can see that (I ⊕ I,≤) is a complete distributive lattice with

the greatest element (1, 0) and the least element (0, 1) satisfying DeMorgan’s laws.

The following is the modification of the concept of the concept of intuitionistic fuzzy sets

introduced by Atanassov (See [2]).

Definition 2.3 ([11]). A mapping A : X → I ⊕ I is called an intuitionistic fuzzy set in X and

we write A(x) = (µA(x), νA(x)) for each x ∈ X. 0̃ and 1̃ are the empty intuitionistic fuzzy set

and the whole intuitionistic fuzzy set in X given by 0̃(x) = (0, 1) and 1̃(x) = (1, 0), respectively.

We denote the set of all intuitionistic fuzzy sets in X as (I ⊕ I)X .

Definition 2.4 ([2]). Let A,B ∈ (I⊕I)X and let {Aα}α∈Γ ⊂ (I⊕I)X . Then the union
⋃
α∈Γ

Aα,

the intersection
⋂
α∈Γ

Aα, the complement Ac of A and the inclusion A ⊂ B are defined as follows:

for each x ∈ X,
(i) (

⋃
α∈Γ

Aα)(x) = (
∨
α∈Γ

µAα(x),
∧
α∈Γ

νAα(x)),

(ii) (
⋂
α∈Γ

Aα)(x) = (
∧
α∈Γ

µAα(x),
∨
α∈Γ

νAα(x)),

(iii) Ac(x) = (νA(x), µA(x)),

(iv) A ⊂ B iff µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

We can easily see that ((I⊕I)X ,∪,∩) is a complete distributive lattice with the least element

0̃ and the greatest element 1̃ satisfying DeMorgan′s laws.

A fuzzy set A ∈ IX is called a fuzzy point in a nonempty set X with the value λ ∈ I0 and

the support x ∈ X, denoted by xλ, if A(x) = λ and A(y) = 0, for each x 6= y ∈ X. We will

denote the set of all fuzzy points in X as FP (X). A fuzzy point xλ in X is said to belong to a

fuzzy set A denoted by xλ ∈ A, if A(x) ≥ λ. Let xλ ∈ FP(X) and let A ∈ IX . Then xλ is said to

be quasi-coincident with A, denoted by xλqA, if A(x) + λ > 1. The negation of the statements

xλ ∈ A and xλqA will be symbolized by the notations xλ /∈ A and xλqA, respectively (See [28]).
3
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Result 2.5 ([28], Proposition 2.3). Let {Aα}α∈Γ ⊂ IX . Then x
λ
q(

⋃
α∈Γ

Aα) if and only if ∃ α ∈ Γ

such that x
λ
qAα.

For each α ∈ I, a mapping α : X → I is called the α−constant fuzzy set in X, if α(x) = α,

for each x ∈ X.

Definition 2.6 ([23]). A fuzzy topology or Lowen′s fuzzy topology on a set X is a collection

δ ⊂ IX satisfying the following three axioms:

(FT1) α ∈ δ, ∀ α ∈ I,
(FT2) A ∩B ∈ δ, ∀ A,B ∈ δ,
(FT3)

⋃
α∈Γ

Aα ∈ δ, ∀ {Aα}α∈Γ ⊂ δ.

The pair (X, δ) is called a fuzzy topological space(in short, fts) and we denote the set of all

fuzzy topologies on X as FT (X). A fuzzy set A is said to the closed in X, if Ac ∈ δ.
If we replace the condition on (FT1) by the weaker condition

(FT1)′ 0,1 ∈ δ
then δ is called a quasi-fuzzy topology or Chang ′s fuzzy topology on X (See [8]). The pair

(X, δ) is called a Chang ′s fuzzy topological space. And we will denote the set of all Chang’s

fuzzy topologies on X as QFT (X).

Definition 2.7 ([28]). Let (X, δ) be fts.

(i) A subfamily B of δ is called a base for δ, if for each A ∈ δ, ∃ BA ⊂ B s.t. A =
⋃
BA.

(ii) A subfamily S of δ is called a subbase for δ, if the family B = {
⋂
F : F is a finite subset of S}

is a base for δ.

Definition 2.8 ([28]). Let (X, δ) be a fts, let A ∈ IX and let xλ ∈ FP (X).

(i) A is called a neighborhood (in short, nbd) of xλ, if

∃ B ∈ δ s.t. xλ ∈ B ⊂ A.

(ii) A is called a Q-neighborhood (in short, Q-nbd) of xλ, if

∃ B ∈ δ s.t. xλqB ⊂ A.

The family consisting of all the nbds [resp. Q-nbds] of xλ is called the system of nbds [resp.

Q-nbds] of xλ and is denoted by N (xλ) [resp.NQ(xλ)]. A nbd [resp. Q-nbd] A is said to be

open, if A ∈ δ.

Result 2.9 ([28], Proposition 2.4). Let (X, δ) be an fts and let B ⊂ δ. Then B is a base for

δ if and only if for each x
λ
∈ FP(X) and for each U ∈ NQ(x

λ
), ∃ B ∈ B such that x

λ
qB ⊂ U.

The following is the modification of the notion of an intuitionistic gradation of openness

introduced by Mondal and Samanta [34].

Definition 2.10 ([22]). Let X be a nonempty set. Then a mapping τ = (µτ , ντ ) : IX → I ⊕ I
is called an intuitionistic smooth topology(in short, ist) or a family of intuitionistic fuzzy open

sets on X, if it satisfies the following conditions :

(IST1) τ(α) = (1, 0), ∀ α ∈ I,
(IST2) µτ (A ∩B) ≥ µτ (A) ∧ µτ (B) and ντ (A ∩B) ≤ ντ (A) ∨ ντ (B), ∀ A,B ∈ IX ,

4
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(IST3) µτ (
⋃
α∈Γ

Aα) ≥
∧
α∈Γ

µτ (Aα) and ντ (
⋃
α∈Γ

Aα) ≤
∨
α∈Γ

ντ (Aα), ∀ {Aα}α∈Γ ⊂ IX .

The pair (X, τ) is called an intuitionistic smooth topological space (in short, ists).

In the above Definition, if we replace the condition(IST1) by the following condition

(IST1)
′
τ(0) = τ(1) = (1, 0),

then τ [resp. (X, τ)] is called an intuitionistic gradation of openness [resp. intuitionistic fuzzy

topological space] (See [34]). In this case, we will call τ [resp. (X, τ)] as an intuitionistic quasi-

smooth topology [resp. intuitionistic quasi-smooth topological space (in short, iqsts)]. We will

denote the set of all intuitionistic quasi-smooth [resp. smooth] topologies on X as IQST (X)

[resp. IST (X)]. It is clear that if (X, τ) is an ists, then it is an iqsts, i.e., IST (X) ⊂ IQST (X).

Let 2 = {0, 1}. Since we can regard (0, 1) and (1, 0) ∈ 2 ⊕ 2 as (0, 1) = 0 and (1, 0) = 1,

respectively, restricting the definition to τ : IX → 2⊕2 gives us the definition of a fuzzy topology

in the sense of Lowen (See [23]). Putting τ : 2X → 2⊕ 2, we even obtain a (crisp) topology on

X again. Of course, if τ is an iqsts, the alternation of the definition to τ : IX → 2⊕ 2 gives us

the definition of the fuzzy topology in the sense of Chang (See [8]).

Definition 2.11 ([22]). Let X be a nonempty set. Then a mapping C = (µC , νC) : IX → I ⊕ I
is called an intuitionistic smooth cotopology (in short, isct) on X if it is satisfies the following

conditions:

(ISCT1) C(α) = (1, 0), ∀ α ∈ I,
(ISCT2) µC(A ∪B) ≥ µC(A) ∧ µC(B)

and

νC(A ∪B) ≤ νC(A) ∨ νC(B), ∀ A,B ∈ IX ,
(ISCT3) µC(

⋂
α∈Γ

Aα) ≥
∧
α∈Γ

µC(Aα)

and

νC(
⋂
α∈Γ

Aα) ≤
∨
α∈Γ

νC(Aα), ∀ {Aα}α∈Γ ⊂ IX .

The pair (X, C) is called an intuitionistic smooth cotopological space(in short, iscts).

In the above Definitions, if we replace the condition (ISCT1) by the condition

(ISCT1)
′
τ(0) = τ(1) = (1, 0),

then τ [resp. (X, τ)] is called an intuitionistic gradation of closedness [resp. intuitionistic fuzzy

cotopological space] (See [34]). In this case, we will call C [resp. (X, C)] as an intuitionistic quasi-

smooth cotopology [resp. intuitionistic quasi-smooth cotopological space (in short, iqscts)].

We will denote the set of all intuitionistic quasi-smooth [resp. smooth] cotopologies on X as

IQSCT (X) [resp. ISCT (X)]. It is clear that if (X, C) is an iscts, then it is an isqcts, i.e.,

ISCT (X) ⊂ IQSCT (X).

Definition 2.12 ([22]). Let (X, τ) be an ists and let (λ, µ) ∈ I ⊕ I. We define [τ ](λ,µ) and

[τ ]∗(λ,µ) as follows, respectively:

(i) [τ ](λ,µ) = {A ∈ IX : µτ (A) ≥ λ, ντ (A) ≤ µ},
(ii) [τ ]∗(λ,µ) = {A ∈ IX : µτ (A) > λ, ντ (A) < µ}.

We call [τ ](λ,µ) [resp. [τ ]∗(λ,µ)] the (λ, µ)−level [resp. strong (λ, µ)−level] of τ . If (λ, µ) = (0, 1),

then [τ ](0,1) = IX , i.e., [τ ](0,1) is the discrete fuzzy topology on X and if (λ, µ) = (1, 0), then

[τ ]∗(1,0) = ∅. Moreover, we can easily see that for any (λ, µ) ∈ I ⊕ I, [τ ]∗(λ,µ) ⊂ τ(λ,µ).

5
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Result 2.13 ([22], Proposition 3.8). (1) Let {δ(λ,µ)}(λ,µ)∈I⊕I be a descending family of fuzzy

topologies on X such that δ(0,1) is the discrete fuzzy topology on X. We define the mapping

τ : IX → I ⊕ I as follows: for each A ∈ IX ,

τ(A) = (
∨
A∈δ(λ,µ)

λ,
∧
A∈δ(λ,µ)

µ).

Then τ ∈IST(X).

(2) If δ(λ,µ) =
⋂

(λ′,µ′)<(λ,µ)

δ(λ′,µ′), for each (λ, µ) ∈ I0 ⊕ I1, then [τ ](λ,µ) = δ(λ,µ).

(3) Alternatively, if δ(λ,µ) =
⋃

(λ′,µ′)>(λ,µ)

δ(λ′,µ′), for each (λ, µ) ∈ I1 ⊕ I0, then [τ ]∗(λ,µ) =

δ(λ,µ).

Result 2.14 ([22], Proposition 3.11). Let (X, δ) be a fuzzy topological space and for each

(λ, µ) ∈ I0 ⊕ I1, we define the mapping δ(λ,µ) : IX → I ⊕ I as follows: for each A ∈ IX ,

δ(λ,µ)(A) =


(1, 0) if A is a constant fuzzy set,

(λ, µ) if A ∈ δ but not a constant fuzzy set,
(0, 1) otherwise.

Then δ(λ,µ) ∈IST(X) such that [δ(λ,µ)](λ,µ) = δ.

In this case, δ(λ,µ) is called (λ, µ)−th intuitionistic gradation on X and (X, δ(λ,µ)) is called

a (λ, µ)−th graded intuitionistic fuzzy topological space.

3. Intuitionistic smooth continuous mapping

If we want to consider a category of intuitionistic smooth topological spaces, we need, besides

the objects, in the category, also a description of the morphism between them. For crisp

topological spaces, these morphisms were continuous mappings. For fuzzy topological spaces,

as can be seen in, e.g. [23], a mapping f : (X, δ) → (Y, δ′) is said to be fuzzy continuous, if

f−1(A) ∈ δ, for each A ∈ δ′.
Now we define an intuitionistic smooth continuous mapping.

Definition 3.1. Let (X, τ
1
) and (Y, τ

2
) be two ists. Then a mapping f : X → Y is said to be:

(i) intuitionistic smooth continuous [34], if it satisfies the following conditions: for each

A ∈ IY ,
µτ

2
(A) ≤ µτ

1
(f−1(A))

and

ντ2 (A) ≥ ντ1 (f−1(A)),

(ii) intuitionistic smooth weakly continuous, if it satisfies the following conditions: for each

A ∈ IY , µτ2 (A) > 0 and ντ2 (A) < 1 imply µτ1 (f−1(A)) > 0 and ντ1 (f−1(A)) < 1,

(iii) intuitionistic smooth strongly continuous, if τ2(A) = τ1(f−1(A)), ∀ A ∈ IY .

It is clear that intuitionistic smooth strong continuity ⇒ intuitionistic smooth continuity ⇒
intuitionistic smooth weak continuity. However the converse may not be true, in general.

Example 3.2. (1) Let X = {a, b, c, d}, and let A and B be two fuzzy sets in X defined as

follows:

A(x) =

{
1 if x = b, d

0 if x = a, c

6
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and

B(x) =

{
1 if x = a, c,

0 if x = b, d.

For each i = 1, 2, we define the mapping τ
i

: IX → I ⊕ I as follows:

τ
i
(α) = (1, 0), τ

1
(A) = τ

1
(B) = (1, 0), τ

2
(A) = τ

2
(B) = (

1

2
,

1

2
).

Then it is clear that (X, τ
1
) and (X, τ

2
) are two ists. Consider the identity mapping 1X :

(X, τ
2
) → (X, τ

1
). Then we can easily see that 1X is intuitionistic smooth weakly continuous,

but not intuitionistic smooth continuous.

(2) Let O be the set of all odd numbers of N and let An = {1, 3, . . . , 2n − 1}. For each

i = 1, 2, we define the mapping τ
i

: IN → I ⊕ I as follows: for each A ∈ IX ,

τi(A) =


( 1
i , 1−

1
i ) if A = χO,

(max{ 1
i ,

1
2n−1}, min{

1
i ,

1
2n−1}) if A = χAn ,

(1, 0) if A ∈ IX \ {χO, χAn}.
Then clearly (X, τi) is an ists. Consider two identity mappings 1X : (X, τ2)→ (X, τ1) and 1∗X :

(X, τ1) → (X, τ2). Then we can easily see that 1X in intuitionistic smooth weakly continuous

but not intuitionistic smooth continuous, and 1∗X is intuitionistic smooth continuous but not

intuitionistic smooth strongly continuous.

Remark 3.3. Let (X, τ) and (Y, τ2) be ists and let f : X → Y be a mapping. Then it

is obvious that if f : (X, τ1) → (Y, τ2) is intuitionistic smooth [resp. weakly and strongly]

continuous, then f : (X,µτ1 ) → (Y, ντ2 ) and f : (X, ν c
τ
1
) → (Y, ν c

τ
2
) are smooth [resp. weakly

and strongly] continuous.

Proposition 3.4. Constant mappings are always intuitionistic smooth continuous.

Proof. Let (X, τ1) and (Y, τ2) be two ists and let f : X → Y be any constant mapping, say

f(x) = y0 ∈ Y , for each x ∈ X, where y0 ∈ Y is fixed. Let A ∈ IY and let x ∈ X. Then

f−1(A)(x) = A(f(x)) = A(y
0
). Thus f−1(A) is a constant fuzzy set in X. So τ

1
(f−1(A)) =

(1, 0). Hence µτ
1
(f−1(A)) = 1 ≥ µτ

2
(A) and ντ

1
(f−1(A)) = 0 ≤ ντ

2
(A). Therefore f is

intuitionistic smooth continuous. �

The following is the immediate result of Definition 3.1.

Proposition 3.5. The identity mapping 1X : (X, τ1) → (X, τ1) is intuitionistic smooth con-

tinuous.

The following is the immediate result of Definitions 2.12 and 3.1.

Theorem 3.6. Let f : (X, τ1)→ (Y, τ2) be a mapping. Then

(1) f is intuitionistic smooth continuous if and only if for each A ∈ IY ,

µCτ 2
(A) ≤ µCτ 1

(f−1(A)) and νCτ 2
(A) ≥ νCτ 1

(f−1(A)),

(2) f is intuitionistic weakly smooth continuous if and only if µCτ 2
(A) > 0 and µCτ 2

(A) < 1

imply µCτ 1
(f−1(A)) > 0 and µCτ 1

(f−1(A)) < 1, for each A ∈ IY .

Proposition 3.7. Let (X, τ1), (Y, τ2) and (Z, τ3) are ists. If f : X → Y and g : Y → Z are

intuitionistic smooth continuous, then so is g ◦ f.
7
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Proof. Let A ∈ IZ . Then

µτ
3
(A) ≤ µτ

2
(g−1(A)) [Since g is intuitionistic smooth continuous]

≤ µτ
1
(f−1(g−1(A))) [Since f is intuitionistic smooth continuous]

= µτ
1
((g ◦ f)−1(A))

and

ντ3 (A) ≥ ντ2 (g−1(A))

≥ ντ
1
(f−1(g−1(A)))

= ντ
1
((g ◦ f)−1(A)).

Thus g ◦ f is intuitionistic smooth continuous. �

By Propositions 3.5 and 3.7, we can see that IST(X) forms a concrete category.

Theorem 3.8. Let f : (X, τ1)→ (Y, τ2) be a mapping between intuitionistic smooth topological

spaces. Then f is intuitionistic smooth continuous if and only if for each (λ, µ) ∈ I ⊕ I,

f : (X, [τ
1
](λ,µ))→ (Y, [τ

2
](λ,µ)) is fuzzy continuous.

Proof. (⇒): Suppose f is intuitionistic smooth continuous. Then clearly µτ
2
(A) ≤ µτ

1
(f−1(A))

and ντ
2
(A) ≥ ντ

1
(f−1(A)), ∀ A ∈ IY . Let B ∈ [τ2 ](λ,µ), for each (λ, µ) ∈ I ⊕ I. Then

λ ≤ µτ
2
(B) ≤ µτ

1
(f−1(B)) and µ ≥ ντ

2
(B) ≥ ντ

1
(f−1(B)). Thus f−1(B) ∈ [τ

1
](λ,µ). So

f : (X, [τ
1
](λ,µ))→ (Y, [τ

2
](λ,µ)) is fuzzy continuous.

(⇐): Suppose the necessary condition holds and let A ∈ IY .
If τ

2
(A) = (0, 1), then clearly, µτ2 (A) = 0 ≤ µτ1 (f−1(A)) and ντ2 (A) = 1 ≥ ντ1 (f−1(A)).

If τ2(A) = (λ, µ) ∈ I0 ⊕ I1, then A ∈ [τ2 ](λ,µ). By the hypothesis, f−1(A) ∈ [τ1 ](λ,µ).

Thus µτ
2
(A) = λ ≤ µτ

1
(f−1(A)) and ντ

2
(A) = µ ≥ ντ

1
(f−1(A)). So, in all cases, µτ

2
(A) ≤

µτ
1
(f−1(A)) and ντ

2
(A) ≥ ντ

1
(f−1(A)). Hence f : (X, τ

1
) → (Y, τ

2
) is intuitionistic smooth

continuous. �

Theorem 3.9. Let (X, δ1) and (Y, δ2) be fts and let f : X → Y be a mapping. Then f :

(X, δ1) → (Y, δ2) is fuzzy continuous if and only if f : (X, δ
(λ,µ)
1 ) → (Y, δ

(λ,µ)
2 ) is intuitionistic

smooth continuous, for each (λ, µ) ∈ I0 ⊕ I1.

Proof. (⇒): Suppose f : (X, δ1) → (Y, δ2) is fuzzy continuous and let A ∈ IY . Then we have

the following possibilities:

(i) A is a constant fuzzy set,

(ii) A ∈ δ2 \ {α : α ∈ I},
(iii) A /∈ δ2.
Suppose A is a constant fuzzy set. Then δ

(λ,µ)
2 (A) = (1, 0), and f−1(A) = 0 or 1. Thus

δ
(λ,µ)
1 (f−1(A)) = (1, 0). So

µ
δ
(λ,µ)
2

(A) = 1 = µ
δ
(λ,µ)
1

(f−1(A))

and

ν
δ
(λ,µ)
2

(A) = 0 = ν
δ
(λ,µ)
1

(f−1(A)).

Suppose A ∈ δ2 \ {α : α ∈ I}. Then δ
(λ,µ)
2 (A) = (λ, µ). Since f : (X, δ1) → (Y, δ2) is

fuzzy continuous, f−1(A) ∈ δ1. Moreover, f−1(A) is not a constant fuzzy set in X. Thus

δ
(λ,µ)
1 (f−1(A)) = (λ, µ). So

µ
δ
(λ,µ)
2

(A) = λ = µ
δ
(λ,µ)
1

(f−1(A))

and
8
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ν
δ
(λ,µ)
2

(A) = µ = ν
δ
(λ,µ)
1

(f−1(A)).

Suppose A /∈ δ2. Then δ
(λ,µ)
2 (A) = (0, 1). Thus

µ
δ
(λ,µ)
2

(A) = 0 ≤ µ
δ
(λ,µ)
1

(f−1(A))

and

ν
δ
(λ,µ)
2

(A) = 1 ≥ ν
δ
(λ,µ)
1

(f−1(A)).

Hence, in all cases, µ
δ
(λ,µ)
2

(A) ≤ µ
δ
(λ,µ)
1

(f−1(A)) and ν
δ
(λ,µ)
2

(A) ≥ ν
δ
(λ,µ)
1

(f−1(A)).

Therefore f : (X, δ
(λ,µ)
1 ) → (Y, δ

(λ,µ)
2 ) is intuitionistic smooth continuous, for each (λ, µ) ∈

I0 ⊕ I1.

(⇐): Suppose the necessary condition holds. From Result 2.14 and Theorem 3.8, we can see

that f : (X, δ1)→ (Y, δ2) is fuzzy continuous. This completes the proof. �

Theorem 3.10. Let (X, τ) be an ists and let f : X → Y be a mapping. Let {δ(λ,µ)}(λ,µ)∈I0⊕I1
be a descending family of fuzzy topologies on Y and let τ ′ be the ist on Y generated be this

family. For each (λ, µ) ∈ I0⊕I1, let B(λ,µ) be a base and let S(λ,µ) be a subbase for δ(λ,µ). Then

(1) f : (X, τ) → (Y, τ ′) is intuitionistic smooth continuous if and only if λ ≤ µτ (f−1(A))

and µ ≥ ντ (f−1(A)), ∀ A ∈ δ(λ,µ), ∀ (λ, µ) ∈ I0 ⊕ I1,

(2) f : (X, τ) → (Y, τ ′) is intuitionistic smooth continuous if and only if λ ≤ µτ (f−1(A))

and µ ≥ ντ (f−1(A)), ∀ A ∈ B(λ,µ), ∀ (λ, µ) ∈ I0 ⊕ I1,

(3) f : (X, τ) → (Y, τ ′) is intuitionistic smooth continuous if and only if λ ≤ µτ (f−1(A))

and µ ≥ ντ (f−1(A)), ∀ A ∈ S(λ,µ), ∀ (λ, µ) ∈ I0 ⊕ I1.

Proof. (1) (⇒): Suppose f : (X, τ) → (Y, τ ′) is intuitionistic smooth continuous. For each

(λ, µ) ∈ I0 ⊕ I1, let A ∈ δ(λ,µ). Then

µτ (f−1(A)) ≥ µτ ′(A) [By the hypothesis]

≥ λ [By Result 2.13 (1)]

and

ντ (f−1(A)) ≤ ντ ′(A) ≤ µ.

(⇐): Suppose the necessary conditions holds. Let A ∈ IY and let τ ′(A) = (λ, µ) ∈ I0 ⊕ I1.
Then A ∈ δ(λ,µ). Thus, by hypothesis,

µτ (f−1(A)) ≥ λ = µτ ′(A)

and

ντ (f−1(A)) ≤ µ = ντ ′(A) ≤ µ.

So f : (X, τ)→ (Y, τ ′) is intuitionistic smooth continuous.

Arguing as above and using Definition 2.8, we get (2) and (3). �

Definition 3.11. Let τ
1

and τ
2
[resp. C1 and C2] be intuitionistic smooth topologies [resp.

intuitionistic smooth cotopologies] on X and Y, respectively. Then a mapping f : X → Y is said

to be intuitionistic smooth open [resp. closed], if µτ1 (A) ≤ µτ2 (f(A)) and ντ1 (A) ≥ ντ2 (f(A))

[resp. µC1
(A) ≤ µC2

(f(A)) and νC1
(A) ≥ νC2

(f(A))], ∀ A ∈ IX .

Definition 3.12. Let (X, τ
1
) and (Y, τ

2
) be two ists. Then a mapping f : X → Y is called an

intuitionistic smooth homeomorphism, if f is bijective, and f and f−1 are intuitionistic smooth

continuous.

The following is the immediate result of Definitions 3.1, 3.11 and Theorem 3.6 (1).
9
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Proposition 3.13. Let X and Y be two sets and let {δ(λ,µ)}(λ,µ)∈I0⊕I1 and {δ′(λ,µ)}(λ,µ)∈I0⊕I1
be two descending families of fuzzy topologies on X and Y, respectively, and let f : X → Y be

a mapping. If f : (X, δ(λ,µ)) → (Y, δ′(λ,µ)) is fuzzy continuous [resp. open and closed] for each

(λ, µ) ∈ I0 ⊕ I1, then f : (X, τ) → (Y, τ ′) is intuitionistic smooth continuous[resp. open and

closed] w.r.t. the intuitionistic smooth topologies τ and τ ′ generated from the families {δ(λ,µ)}
and {δ′(λ,µ)}.

4. Intuitionistic smooth subspace

Let Y ⊂ X and let A ∈ IX . Then the restriction of A on Y is denoted by A |Y . For each

A ∈ IY , the extension of A on X, denoted by AX , is defined as follows: for each x ∈ X,

AX(x) =

{
A(x) if x ∈ Y,
0 if x ∈ X\Y.

Proposition 4.1. Let (X, τ) be an ists and let Y ⊂ X. We define the mapping τ
Y

: IY → I⊕I
as follows: for each A ∈ IY ,

τ
Y

(A) = (
∨

B∈IX , A=B|Y

µτ (B),
∧

B∈IX , A=B|Y

ντ (B)).

Then τ
Y

is an intuitionistic smooth topology on Y , µτ
Y

(A) ≥ µτ (AX) and ντ
Y

(A) ≤ ντ (AX),

for each A ∈ IY .
In this case, the intuitionistic smooth topological space (Y, τ

Y
) is called a subspace of (X, τ)

and τ
Y

is called the intuitionistic smooth topology on Y induced by τ.

Proof. For each A ∈ IY , let A = B |Y and B ∈ IX . Since τ ∈IST(X), µτ (B) ≤ 1−ντ (B). Thus∨
B∈IX , A=B|Y

µτ (B) ≤
∨

B∈IX , A=B|Y

(1− ντ (B)) = 1−
∧

B∈IX , A=B|Y

ντ (B).

So µτ
Y

(A) ≤ 1− ντ
Y

(A). Hence τ
Y

: IY → I ⊕ I is a mapping.

It is obvious that the condition (IST1) holds.

Let A,B ∈ IY . Then

µτ
Y

(A) =
∨
C∈IX , A=C|Y µτ (C), µτ

Y
(B) =

∨
D∈IX , B=D|Y µτ (D)

and

ντ
Y

(A) =
∧
C∈IX , A=C|Y ντ (C), ντ

Y
(B) =

∧
D∈IX , B=D|Y ντ (D).

Thus

µτ
Y

(A ∩B) =
∨
C∩D∈IX , A∩B=(C∩D)|Y µτ (C ∩D)

≥
∨
C∩D∈IX , A∩B=(C∩D)|Y [µτ (C) ∧ µτ (D)] [Since τ ∈IST(X)]

= (
∨
C∈IX , A=C|Y µτ (C)) ∧ (

∨
D∈IX , B=D|Y µτ (D))]

= µτ
Y

(A) ∧ µτ
Y

(B).

Similarly, we have ντ
Y

(A ∩B) ≤ ντ
Y

(A) ∨ ντ
Y

(B). So the condition (IST2) holds.

Now let {Aα}α∈Γ ⊂ IY . Then, for each α ∈ Γ,

µτ
Y

(Aα) =
∨

Bα∈IX , Aα=Bα|Y

µτ (Bα)

and

ντ
Y

(Aα) =
∧

Bα∈IX , Aα=Bα|Y

ντ (Bα).

Thus
10
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µτ
Y

(
⋃
α∈Γ

Aα) =
∨

⋃
α∈Γ Aα∈IX ,

⋃
α∈Γ Bα=(

⋃
α∈Γ Bα)|Y

µτ (
⋃
α∈Γ

Bα)

≥
∨

Bα∈IX , Aα=Bα|Y

[
∧
α∈Γ

µτ (Bα)]

≥
∧
α∈Γ

[
∨

Bα∈IX , Aα=Bα|Y

µτ (Bα)]

=
∧
α∈Γ

µτ
Y

(Aα).

Similarly, we have ντ
Y

(
⋃
α∈Γ

Aα) ≤
∨
α∈Γ

ντ
Y

(Aα). So the condition (IST3) holds. Hence τ
Y
∈IST(Y ).

It is clear that µτ
Y

(A) ≥ µτ (AX) and ντ
Y

(A) ≤ ντ (AX), for each A ∈ IY from the definition

of τ
Y
. �

Proposition 4.2. Let (Y, τ
Y

) be an intuitionistic smooth subspace of (X, τ) and let A ∈ IY .

Then

(1) Cτ
Y

(A) = (
∨

B∈IX ,A=B|Y

µC τ
(B),

∧
B∈IX ,A=B|Y

νC τ
(B)), where Cτ

Y
(A) = τ

Y
(Ac),

(2) if Z ⊂ Y ⊂ X, then τ
Z

= (τ
Y

)
Z
.

Proof. (1) Let A ∈ IY . Then

µC τY
(A) = µτ

Y
(Ac)

=
∨

B∈IX , Ac=B|Y

µτ (B)

=
∨

Bc∈IX , A=Bc|Y

µτ (B)

=
∨

Bc∈IX , A=Bc|Y

µC τ
(Bc)

=
∨

C∈IX , A=C|Y

µτ
Y

(A).

On the other hand,

νC τY
(A) = ντ

Y
(Ac)

=
∧

B∈IX , Ac=B|Y

ντ (B)

=
∧

Bc∈IX , A=Bc|Y

ντ (B)

=
∧

Bc∈IX , A=Bc|Y

νC τ
(Bc)

=
∧

C∈IX , A=C|Y

νCτY
(C).

Thus the result holds.

(2) Let A ∈ IZ . Then

µ(τ
Y

)
Z

(A) =
∨

B∈IY , A=B|Z

µτ
Y

(B)

=
∨

B∈IY ,A=B|Z

[
∨

C∈IX , B=C|Y

µ
τ
(C)]

=
∨

C∈IX , A=C|Z

µτ (C)

= µτ
Z

(A).
11
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On the other hand,

ν(τ
Y

)
Z

(A) =
∧

B∈IY , A=B|Z

ντ
Y

(B)

=
∧

B∈IY ,A=B|Z

[
∧

C∈IX ,B=C|Y

ντ (C)]

=
∨

C∈IX , A=C|Z

ντ (C)

= ντ
Z

(A).

Thus τ
Z

= (τ
Y

)
Z
. �

Proposition 4.3. Let f : (X, τ1) → (Y, τ2) be an intuitionistic smooth continuous mapping

and let Z ⊂ X. Then the restriction mapping f |Z : (Z, (τ1)
Z

) → (Y, τ
2
) is also intuitionistic

smooth continuous.

Proof. Let A ∈ IY . Then

µ(τ
1
)
Z

((f |Z)−1(A)) =
∨
{µτ1 (B) : B ∈ IX , (f |Z)−1(A) = B |Z}

≥ µτ
1
(f−1(A))

≥ µτ
2
(A)

and

ν(τ
1
)
Z

((f |Z)−1(A)) =
∧
{ντ

1
(B) : B ∈ IX , (f |Z)−1(A) = B |Z}

≤ ντ1 (f−1(A))

≤ ντ2 (A).

Thus f |Z is intuitionistic smooth continuous. �

5. Neighborhood structures in intuitionistic smooth topological spaces

For a mapping M : IX → I ⊕ I and (λ, µ) ∈ I1 ⊕ I0, let us define the family

[M ](λ,µ) = {A ∈ IX : µ
M

(A) > λ and ν
M

(A) < µ}.

Definition 5.1. Let (X, τ) be an ists. Then a mapping β : IX → I⊕I is called an intuitionistic

smooth base of τ , if for each (λ, µ) ∈ I1 ⊕ I0, [τ ](λ,µ) =
⋃
{β′ : β′ ⊂ [β](λ,µ)}.

Theorem 5.2. Let (X, τ) be an ists. Then a mapping β : IX → I ⊕ I is an intuitionistic

smooth base of τ if and only if for each (λ, µ) ∈ I1⊕ I0, if xλ ∈ FP(X) and A ∈ τ (λ,µ) such that

xλqA, then there exists a B ∈ [β](λ,µ) such that xλqB ⊂ A.

Proof. (⇒): Suppose a mapping β : IX → I ⊕ I is an intuitionistic smooth base of τ. Then, by

Definition 5.1,

[τ ](λ,µ) =
⋃
{β′ : β′ ⊂ [β](λ,µ)}, for each (λ, µ) ∈ I1 ⊕ I0.

Let xλ ∈ FP(X) and let A ∈ IX such that xλqA and A ∈ [τ ](λ,µ). Then there exists a β0 ⊂
[β](λ,µ) such that A =

⋃
β0. Thus xλq(

⋃
β0). So, by Result 2.9, xλqB, for some B ∈ β0. Hence

the necessary condition holds.

(⇐): Suppose the necessary condition holds. Assume that the mapping β : IX → I ⊕ I is

not an intuitionistic smooth base of τ. Then there exist (λ0, µ0) ∈ I1 ⊕ I0 and A ∈ [τ ](λ0,µ0)

such that A 6=
⋃
β′ for all β′ ⊂ [β](λ0,µ0). Let β∗ = {B ∈ [β](λ0,µ0) : B ⊂ A} and let G =

⋃
β∗.

Then clearly A 6= G. Thus there exists a x ∈ X such that G(x) < A(x). Let α = 1 − G(x).

Then clearly xα ∈ FP (X). Moreover, 1 = G(x) + α < A(x) + α. Thus xαqA.
12



S. R. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

On the other hand, B ⊂ G for each B ∈ β∗. Then

B(x) + α ≤ G(x) + α = 1.

Thus xαqB for each B ⊂ A and B ∈ [β](λ0,µ0). This is a contradiction. So β is an intuitionistic

smooth base of τ. �

Theorem 5.3. Let (X, τ) be an ists. Then a mapping β : IX → I ⊕ I is an intuitionistic

smooth base of τ if and only if for each A ∈ IX and p ∈ FP(X) such that pqA, µτ (A) ≤∨
{µβ(B) : B ∈ IX and pqB ⊂ A} and ντ (A) ≥

∧
{νβ(B) : B ∈ IX and pqB ⊂ A}.

Proof. (⇒): Suppose a mapping β : IX → I ⊕ I is an intuitionistic smooth base of τ. Let

p ∈ FP(X) and let A ∈ IX such that pqA.

Suppose τ(A) = (0, 1). Then clearly the required inequalities hold.

Suppose τ(A) 6= (0, 1), i.e., µτ (A) = λ > 0 and ντ (A) = µ < 1, where λ+ µ ≤ 1. Let ε1 and

ε2 be arbitrary 0 < ε1 ≤ λ and µ ≤ ε2 < 1. Then

µτ (A) > λ− ε1, ντ (A) < µ+ ε2 and (λ− ε1) + (µ+ ε2) ≤ 1.

Thus A ∈ [τ ](λ−ε1,µ+ε2). By Theorem 5.2, there exists B ∈ [β](λ−ε1,µ+ε2) such that pqB ⊂ A.

So ∨
{µβ(B) : B ∈ IX , pqB ⊂ A} > λ− ε1

and ∧
{νβ(B) : B ∈ IX , pqB ⊂ A} < µ+ ε2.

Since ε1 and ε2 are arbitrary,∨
{µβ(B) : B ∈ IX , pqB ⊂ A} ≥ λ = µτ (A)

and ∧
{νβ(B) : B ∈ IX , pqB ⊂ A} ≤ µ = ντ (A).

So, in either cases, the required inequalities hold.

(⇐): Suppose the necessary condition holds. Let e ∈ FP(X) and let U ∈ [τ ](λ,µ) such that

eqU, where (λ, µ) ∈ I1 ⊕ I0. Then µτ (U) > λ and ντ (U) < µ. By the hypothesis,

λ < µτ (U) ≤
∨
{µβ(B) : B ∈ IX and eqB ⊂ U}

and

µ > ντ (U) ≥
∧
{νβ(B) : B ∈ IX and eqB ⊂ U}.

Thus there exists a B ∈ IX such that eqB ⊂ U, µβ(U) > λ and νβ(U) < β. So B ∈ [β](λ,µ)

and eqB ⊂ U. Hence, by Theorem 5.2, β is an intuitionistic smooth base of τ. �

Definition 5.4. Let (X, τ) be an ists and let p ∈ FP(X) be fixed.

(i) A mapping Np : IX → I ⊕ I is called the intuitionistic smooth neighborhood system of p

w.r.t. τ , if for each (λ, µ) ∈ I1 ⊕ I0,

[Np](λ,µ) = {A ∈ IX : (∃ T ∈ [τ ](λ,µ)) (p ∈ T ⊂ A)}.

The real number µN p
(A) [resp. νNp(A)] is called the degree of neighborhoodness [resp. non-

neighborhoodness] of A to p.

(ii) A mapping Qp : IX → I ⊕ I is called the intuitionistic smooth Q−neighborhood system

of p w.r.t. τ , if for each (λ, µ) ∈ I1 ⊕ I0,

[Qp]
(λ,µ) = {A ∈ IX : (∃ T ∈ [τ ](λ,µ)) (pqT ⊂ A)}.

The real number µQp(A) [resp. νQp(A)] is called the degree of Q−neighborhoodness [resp.

non-Q-neighborhoodness] of A to p.
13
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Theorem 5.5. Let (X, τ) be an ists and let p ∈ FP (X) be fixed.

(1) A mapping Np : IX → I ⊕ I is the intuitionistic smooth neighborhood system of p w.r.t.

τ if and only if for each A ∈ IX ,

Np(A) =


(
∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A}, if p ∈ A,∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A})

(0, 1) if p /∈ A.

(2) A mapping Qp : IX → I ⊕ I is the intuitionistic smooth Q−neighborhood system of p

w.r.t. τ if and only if for each A ∈ IX ,

Qp(A) =


(
∨
{µτ (V ) : V ∈ IX , pqV ⊂ A}, if pqA,∧
{ντ (V ) : V ∈ IX , pqV ⊂ A})

(0, 1) if pqA.

Proof. (1) (⇒): Suppose a mapping Np : IX → I⊕ I is the intuitionistic smooth neighborhood

system of p w.r.t. τ . Let A ∈ IX .
Case(i): Suppose p /∈ A. Assume that Np(A) 6= (0, 1), i.e., µN p

(A) > 0 or νN p
(A) < 1. Then,

by the hypothesis and Definition 5.4 (i), there exists a T ∈ [τ ](0,1) such that p ∈ T ⊂ A. Thus

p ∈ A. This is a contradiction. So Np(A) = (0, 1).

Case(ii): Suppose p ∈ A. Then we may have Np(A) = (0, 1) or Np(A) 6= (0, 1).

If Np(A) = (0, 1), then it is obvious that

µN p
(A) = 0 ≤

∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A}

and

νN p
(A) = 1 ≥

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A}.

Furthermore, suppose that∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A} = λ > 0

and ∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A} = µ < 1.

Then there exists a V ∈ IX such that µτ (V ) > 0, ντ (V ) < 1 and p ∈ V ⊂ A.
Thus, by the hypothesis and Definition 5.4 (i), A ∈ [Np] (0,1). So Np(A) 6= (0, 1). This is a

contradiction. Hence

Np(A)

= (
∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A},

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A})

= (0, 1).

Suppose Np(A) 6= (0, 1), i.e., µN p
(A) = λ > 0 or νN p

(A) = µ < 1. Let ε1 and ε2 be

arbitrary 0 < ε1 ≤ λ and µ ≤ ε2 < 1. Then µN p
(A) > λ − ε1 and νN p

(A) < µ + ε2. Thus

A ∈ [Np] (λ−ε1,µ+ε2). By the hypothesis, there exists a T ∈ [τ ](λ−ε1,µ+ε2) such that p ∈ T ⊂ A.
So ∨

{µτ (V ) : V ∈ IX , p ∈ V ⊂ A} > λ− ε1
and ∧

{ντ (V ) : V ∈ IX , p ∈ V ⊂ A} < µ+ ε2.

Since ε1 and ε2 are arbitrary,

(5.5.1)
∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A} = µN p

(A)

14
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and

(5.5.2)
∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A} < µ = νN p

(A).

On the other hand, let ∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A} = α > 0

and ∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A} = β < 1.

Let ε1 and ε2 be arbitrary 0 < ε1 ≤ α and β ≤ ε2 < 1. Then there exists a V ∈ IX such that

µτ (V ) > α− ε1, ντ (V ) < β + ε2 and p ∈ V ⊂ A. Thus V ∈ [τ ](α−ε1,β+ε2) and p ∈ V ⊂ A. So by

the hypothesis, A ∈ [Np](α−ε1,β+ε2), i.e., µN p
(A) > α − ε1 and νN p

(A) < β + ε2. Since ε1 and

ε2 be arbitrary,

(5.5.3) µN p
(A) ≥ α =

∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A}

and

(5.5.4) νN p
(A) ≤ β =

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A}.

Hence, by (5.5.1), (5.5.2), (5.5.3) and (5.5.4),

Np(A) = (
∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A},

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A}).

This completes the proof of the necessity.

(⇐): Suppose the necessary condition holds. For each (λ, µ) ∈ I1 ⊕ I0, U ∈ [Np] (λ,µ), i.e.,

µN p
(U) > λ and νN p

(U) < µ. Then, by the hypothesis,

λ < µN p
(U) =

∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A}

and

µ > νN p
(U) =

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A}.

Thus there exists a V ∈ IX such that µτ (V ) > λ, ντ (V ) < µ and p ∈ V ⊂ U. So V ∈ [τ ](λ,µ)

and p ∈ V ⊂ A. Hence N (λ,µ)
p ⊂ {U ∈ IX : (∃ T ∈ τ (λ,µ)) (p ∈ T ⊂ U)}.

On the other hand, suppose there exist (λ, µ) ∈ I1⊕I0 and T ∈ [τ ](λ,µ) such that p ∈ T ⊂ U.
Then

µN p
(U) =

∨
{µτ (V ) : V ∈ IX , p ∈ V ⊂ A} > λ

and

νN p
(U) =

∧
{ντ (V ) : V ∈ IX , p ∈ V ⊂ A} < µ.

Thus U ∈ [Np] (λ,µ). So {U ∈ IX : (∃ T ∈ [τ ](λ,µ)) (p ∈ T ⊂ U)} ⊂ [Np] (λ,µ).

Hence N (λ,µ)
p = {U ∈ IX : (∃ T ∈ [τ ](λ,µ)) (p ∈ T ⊂ U)}. Therefore Np is the intuitionistic

smooth neighborhood system of p w.r.t. τ.

(2) The proof is similar to (1). �

In the following result, we show that the intuitionistic smooth Q−neighborhood system of

a fuzzy point w.r.t. an ist τ can be given exactly in terms of an intuitionistic smooth base of

such τ.
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Theorem 5.6. Let (X, τ) be an ists, let a mapping β : IX → I ⊕ I be an intuitionistic smooth

base of τ and let p ∈ FP(X) be fixed. Then a mapping Qp : IX → I ⊕ I is the intuitionistic

smooth Q−neighborhood system of p w.r.t. τ if and only if

Qp(U) =


(
∨
{µβ(B) : B ∈ IX , pqB ⊂ U}, if pqU∧
{νβ(B) : B ∈ IX , pqB ⊂ U})

(0, 1) if pqU,

for each U ∈ IX .

Proof. By Theorem 5.2 and Definition 5.4 (ii), Qp is the intuitionistic smooth Q− neighborhood

system of p w.r.t. τ if and only if for each (λ, µ) ∈ I1 ⊕ I0, [Qp]
(λ,µ) = {U ∈ IX : (∃ B ∈

[β](λ,µ)) (pqB ⊂ U)}. By using this fact, we complete the proof in a way similar to that of

Theorem 5.5 (2). �

Proposition 5.7. Let (X, τ) be an ists and let p ∈ FP(X) be fixed. If a mapping Np : IX → I⊕I
is the intuitionistic smooth neighborhood system of p w.r.t. τ , then the followings hold:

(IN1) if µN p
(U) > 0 and νN p

(U) < 1, where U ∈ IX , then p ∈ U,
(IN2) (

∨
{µN p

(U) : U ∈ IX},
∧
{νN p

(U) : U ∈ IX}) = (1, 0).

(IN3 for any U1, U2 ∈ IX ,

µN p
(U1 ∩ U2) ≥ µN p

(U1) ∧ µN p
(U2)

and

νN p
(U1 ∩ U2) ≤ νN p

(U1) ∨ νN p
(U2),

(IN4) If U1 ⊂ U2 and U1, U2 ∈ IX , then µN p
(U1) ≤ µN p

(U2) and νN p
(U1) ≥ νN p

(U2).

(IN5) for each U ∈ IX ,

µN p
(U) ≤

∨
{µN p

(V ) ∧ (
∧
e∈V

µN e
(V )) : V ∈ IX , V ⊂ U}

and

νN p
(U) ≥

∧
{νN p

(V ) ∨ (
∨
e∈V

νN e
(V )) : V ∈ IX , V ⊂ U}.

Proof. (IN1), (IN2) and (IN4) follow directly from Theorem 5.5 (1).

(IN3) Let U1, U2 ∈ IX . If Np(U1) = (0, 1) or Np(U2) = (0, 1), then the required inequalities

are obvious. Now let us suppose µN p
(U1) = λ1 > 0, νN p

(U1) = µ1 < 1 and µN p
(U2) = λ2 >

0, νN p
(U2) = µ2 < 1. Let ε1 > 0 and ε2 > 0 be arbitrary such that ε1 ≤ λ1∧λ2 and ε2 ≥ µ1∨µ2.

Then

µN p
(U1) > λ1 − ε1 ≥ 0, νN p

(U1) < µ1 + ε2 ≤ 1

and

µN p
(U2) > λ2 − ε1 ≥ 0, νN p

(U2) < µ2 + ε2 ≤ 1.

Thus, by Definition 5.4 (i), there exist T1, T2 ∈ IX such that

µτ (T1) > λ1 − ε1, ντ (T1) < µ1 + ε2, p ∈ T1 ⊂ U1

and

µτ (T2) > λ2 − ε1, ντ (T2) < µ2 + ε2, p ∈ T2 ⊂ U2.

So,

µτ (T1 ∩ T2) ≥ µτ (T1) ∧ µτ (T2) [Since τ ∈IST(X)]
16
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> (λ1 − ε1) ∧ (λ2 − ε1)

= (λ1 ∧ λ2)− ε1,
ντ (T1 ∩ T2) ≤ ντ (T1) ∨ ντ (T2)

< (µ1 + ε2) ∨ (µ2 + ε2)

= (µ1 ∨ µ2) + ε2,

and

p ∈ T1 ∩ T2 ⊂ U1 ∧ U2.

By the hypothesis,

µNp(U1 ∩ U2) > (λ1 ∧ λ2)− ε1
and

νN p
(U1 ∩ U2) < (µ1 ∨ µ2) + ε2.

Since ε1 and ε2 are arbitrary,

µN p
(U1 ∩ U2) ≥ λ1 ∧ λ2 = µN p

(U1) ∧ µN p
(U2)

and

νN p
(U1 ∩ U2) ≤ µ1 ∨ µ2 = νN p

(U1) ∨ νNp(U2).

(IN5) Let U ∈ IX . If Np(U) = (0, 1), then the required inequalities are obvious. Let us

suppose Np(U) 6= (0, 1), i.e., µN p
(U) = λ > 0 and νN p

(U) = µ < 1. Let ε1 > 0 and ε2 > 0 be

arbitrary such that ε1 ≤ λ and ε2 ≥ µ. Then

µN p
(U) > λ− ε1 and νN p

(U) < µ+ ε2.

Thus, by Definition 5.4 (i), there exists V0 ∈ IX such that

µτ (V0) > λ− ε1, ντ (V0) < µ+ ε2 and p ∈ V0 ⊂ U.

Since V0 ⊂ V0, µN e
(V0) > λ− ε1 and νN e

(V0) < µ+ ε2 for each e ∈ V0. So∧
e∈V0

µN e
(V0) ≥ λ− ε1 and

∨
e∈V0

νN e
(V0) ≥ λ+ ε2.

On the other hand, in particular, µN p
(V0) > λ− ε1 and νN p

(V0) < µ+ ε2.

Thus ∨
{µN p

(V ) ∧ (
∧
e∈V

µN e
(V )) : V ∈ IX , V ⊂ U}

≥ µN p
(V0) ∧ (

∧
e∈V0

µN e
(V0))

≥ λ− ε1
and ∧

{νN p
(V ) ∨ (

∨
e∈V

νN e
(V )) : V ∈ IX , V ⊂ U}

≤ νN p
(V0) ∨ (

∨
e∈V0

νN e
(V0))

≤ µ+ ε2.

Since ε1 and ε2 are arbitrary, the required inequalities follow. This complete the proof. �

Proposition 5.8. Let (X, τ) be an ists and let p ∈ FP (X) be fixed. If a mapping Qp : IX →
I ⊕ I is the intuitionistic smooth Q−neighborhood system of p w.r.t. τ , then the following hold:

(IQ1) for each U ∈ IX , if µQp(U) > 0 and νQp(U) < 1, then pqU,
17
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(IQ2) (
∨
{µQp(U) : U ∈ IX},

∧
{νQp(U) : U ∈ IX}) = (1, 0),

(IQ3) For any U1, U2 ∈ IX ,

µQp(U1 ∩ U2) ≥ µQp(U1) ∧ µQp(U2)

and

νQp(U1 ∩ U2) ≤ νQp(U1) ∨ νQp(U2),

(IQ4) if U1 ⊂ U2 and U1, U2 ∈ IX , then

µQp(U1) ≤ µQp(U2) and νQp(U1) ≥ νQp(U2),

(IQ5) for each U ∈ IX ,

µQp(U) ≤
∨
{µQp(V ) ∧ (

∧
eqV

)νQe(U) : V ∈ IX , V ⊂ U}

and

νQp(U) ≥
∧
{νQp(V ) ∨ (

∨
eqV

)νQe(U) : V ∈ IX , V ⊂ U}.

Proof. The proof is similar to Proposition 5.7. �

Proposition 5.9. Let the mapping Qp : IX → I ⊕ I satisfies the conditions (IQ1)-(IQ5). We

define the mapping τ : IX → I ⊕ I as follows: for each U ∈ IX ,

τ(U) =

 (
∧
eqV

µQe(U),
∨
eqV

νQe(U)) if U ∈ IX \ {α : α ∈ I1},

(1, 0) if U ∈ {α : α ∈ I1}.

Then τ ∈IST(X). Furthermore, the mapping Qp is unique the intuitionistic smooth Q−neighborhood

system of p w.r.t. τ.

Proof. From the definition of τ, it is clear that µτ (U) + ντ (U) ≤ 1, for each U ∈ IX . Then

τ : IX → I ⊕ I is a mapping. It is obvious that τ(α) = (1, 0), for each α ∈ I1. By (IQ1) and

(IQ4), for each e ∈ FP (X),

µτ (1) =
∧
eqU

µQe(U) = µQe(1) = 1

and

ντ (1) =
∨
eqU

νQe(U) = νQe(1) = 0.

Thus τ(1) = (1, 0). So the condition (IST1) holds.

Let U1, U2 ∈ IX . If U1 ∩ U2 = 0, then it is obvious that

µτ (U1 ∩ U2) = 1 ≥ µτ (U1) ∧ µτ (U2)

and

ντ (U1 ∩ U2) = 0 ≤ ντ (U1) ∨ ντ (U2).

Let us suppose U1 ∩ U2 6= 0. Then, by the proof of Proposition 2.7 in [14],

µτ (U1 ∩ U2) ≥ µτ (U1) ∧ µτ (U2).

On the other hand,

ντ (U1 ∩ U2) =
∨

eq(U1∩U2)

νQe(U1 ∩ U2)

18
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≤
∨

eq(U1∩U2)

[νQe(U1) ∨ νQe(U2)] [By the condition (IQ3)]

= (
∨

eq(U1∩U2)

νQe(U1)) ∨ (
∨

eq(U1∩U2)

νQe(U2))

≤ (
∨
eqU1

νQe(U1)) ∨ (
∨
eqU2

νQe(U2))

= ντ (U1) ∨ ντ (U2).

So the condition (IST2) holds.

Now let {Uα}α∈Γ ⊂ IX . If
⋃
α∈Γ

Uα = 0, then it is obvious that

µτ (
⋃
α∈Γ

Uα) = 1 ≥
∧
α∈Γ

µτ (Uα)

and

ντ (
⋃
α∈Γ

Uα) = 0 ≤
∨
α∈Γ

ντ (Uα).

Suppose
⋃
α∈Γ

Uα 6= 0. Then, by the proof of Proposition 2.7 in [14],

µτ (
⋃
α∈Γ

Uα) ≥
∧
α∈Γ

µτ (Uα).

On the other hand,

ντ (
⋃
α∈Γ

Uα) =
∨

eq(
⋃
α∈Γ Uα)

νQe(
⋃
α∈Γ

Uα)

≤
∨

eqUα0

νQe(Uα0) [By the condition (IQ4) and Result 2.6]

= ντ (Uα0
).

Thus ντ (
⋃
α∈Γ

Uα) ≤
∨
α∈Γ

ντ (Uα).

So the condition (IST3) holds. Hence τ ∈IST(X).

Now we show the mapping Qp : IX → I ⊕ I satisfying the condition (IQ1)-(IQ5) is unique

the intuitionistic smooth Q−neighborhood system of p w.r.t. τ.

Let a mapping Mp : IX → I ⊕ I be the another intuitionistic smooth Q− neighborhood

system of p w.r.t. τ. Then, by the proof of Proposition 2.7 in [14], µQp = µMp . Thus it is

sufficient to show that νQp = νMp .

Let U ∈ IX . If pqU, then, by Theorem 5.5 (2) and (IQ1),

(5.9.1) νMp
(U) = 0 = νQp(U).

Let us suppose pqU. Then

νMp(U) =
∧
{ντ (V ) : V ∈ IX , pqV ⊂ U} [By Theorem 5.5 (2)]

=
∧
{
∨
eqV

νQe(V ) : V ∈ IX , pqV ⊂ U} [By the definition of τ ]

≥
∧
{µQp(V ) : V ∈ IX , pqV ⊂ U} [Since

∨
eqV

νQe(V ) ≥ νQP (V )]

≥ νQe(U). [By the condition (IQ4)]

Thus

(5.9.2) νMp
(U) ≥ νQp(U), for each U ∈ IX such that pqU.
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On the other hand,

νQp(U)

≥
∧
{νQp(V ) ∨ (

∨
eqV

νQe(V )) : V ∈ IX , V ⊂ U} [By the condition (IQ5)]

= [
∧
{νQp(V ) ∨ (

∨
eqV

νQe(V )) : V ∈ IX , pqV, V ⊂ U}]

∧[
∧
{νQp(V ) ∨ (

∨
eqV

νQe(V )) : V ∈ IX , pqV, V ⊂ U}]

=
∧
{νQp(V ) ∨ (

∨
eqV

νQe(V )) : V ∈ IX , pqV, V ⊂ U}

[By the condition (IQ1), νQP (V ) = 1 for pqV ]

≥
∧
{
∨
eqV

νQe(V ) : V ∈ IX , pqV, V ⊂ U}

= νMp
(U).

So

(5.9.3) νQp(U) ≥ νMp
(U), for each U ∈ IX with pqU.

By (5.9.1), (5.9.2) and (5.9.3), νQp = νMp
. Hence Mp = Qp. Therefore Qp is unique. �

6. Conclusions

We introduced the concept of an intuitionistic smooth continuity and obtained some results

(in particular, see Theorems 3.8, 3.9 and 3.10). Next, we defined the intuitionistic smooth

subspace of an ists and obtained two properties. Finally, we introduced the concept of an

intuitionistic smooth base and obtained its characterizations (See Theorems 5.2 and 5.2). Fur-

thermore, we define the intuitionistic smooth neighborhood system and the intuitionistic smooth

Q-neighborhood system, and obtained their characterizations (See Theorem 5.5).
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